Splitting advection, diffusion and reaction processesin a
continuous model of root growth

A. Bonned, Y. Dumont, C. Jourdaf H. Rey and T. Fourcaud
'CIRAD, UMR AMAP, TA-A51/PS2, Montpellier, F-3439&dex 5, France.
’CIRAD, UPR Ecosystémes de Plantation, MontpellRA, SupAgro, F-34060 cedex 2,
France.
adrien.bonneu@cirad.fr

Key words: partial differential equation, root density, r@sthitectureEucal yptus root
system.

I ntroduction

Modeling and simulating plant root growth in conti@e with soil water and nutrient transfer is an
important challenge that finds applications in méiejds of research. Density based models, which
are often represented under the form of partidedifitial equations (PDE), aim in integrating root
characteristics through time and spatial dependiamsity functions (Bastiagt al., 2008; Dupuyet al.,
2010). PDE models are useful when it is difficaltttack all individual components in a root system.
In addition, they are low CPU time consuming, whaan be very powerful when applied at a large
scale.

The aim of this paper is to propose a single gerflDE for modeling the growth of a large diversity
of dense root networks. The model includes threén mpaysical phenomena, namely advection,
diffusion and reaction, which both aggregate ddfdraspects of plant architecture and development
rules, e.g. elongation, ramification and mortalifis formulation can be generalized to any unknown
density functions, e.g. biomass, root and tip dignse length, orientation angles. A numerical salhem
based on splitting operators is proposed to stigeptoblem, separating between these three differen
processes. This splitting approach has three néwardages. It is first a powerful and consistent
numerical method that allows the use of appropnataerical scheme for each kind of process and its
related equation. Second, it can help to analyeedlative importance of these processes at a given
scale for different root architectures and the etioh of their respective weight regarding to plant
ontology. Lastly, it makes easier the parameteamatf the growth model. The application of the
splitting method is shown and discussed for differeot system types.

Theoretical Framework

The fundamental PDE equation of the root dynamiwadel is given by:
0,n=4 (n)+o (n) +& () 1)
whered, corresponds to the partial derivative in time. AsBastian et al. (2008), the unknown

function of equation (1) is the total root tips ssection area per unit of volumé,y,t), (m*.m™).
The soil is supposed to be a square doalin [°.

The three semi-group operators are defined by:

-4 (n)=v.0(n): the advection operator corresponds to the systisplacement with a velocity
V (x,y,t), whereC is a coefficient of soil fertility.

-® (n) =0.(DOn): the diffusion operator allows the whole systemspread out in space. Both
isotropic or anisotropic diffusion strategies candmnsidered through the expression of the diffusio
coefficient D(xy,t,C). The advection and diffusion phenomena inifhfiintegrate the primary growth
process of all root types and their correspondnogvth velocities.

- ® (n) = f(C,n,d): the reaction operator, represents roantiing and root mortality, d is the root

mortality rate and f is a nonlinear function.



Matlab software was used to solve the model, basethe discretization of equation (1). A single
numerical scheme is not always efficient to sinaildte three different phenomena simultaneously.
| The splitting method was then used as alternative approach. This approach allows bigia
numerical schemes to be developed for each opdidtordsdorder et al., 2003). L&t be the time
step, andt, =t,+ kAt. Then, if we noten* an approximation ofnat timet, , the formal algorithm

leads to

Formal algorithm:
For k=0:T

1. Solved,n, = 4 (n,)with n, (0)= n“on [0,At];
2. Solved,ny = @ (ny) with ny (0)= n,(At) on [0,+At] ;
3. Solved,n; = & (ng)with ng(0)= ng (At)

4. Sen**'=n_(At) ;
end

Numerical Results

The AMAPsim software (Barczi et al., 2008) was usedyenerate root systems at different times
based on architectural models. Aggregated dataaadn was then performed using PlantXtract
(RACINES software in Jourdan and Rey, 1997b). Todd returns the values of generalized density
functions, e.g. root length, apexes number, in eathof a meshed domain. The dynamic density
maps can then be plotted with Matlab and can be fssenodel parameterization and evaluation.
Operators in equation (1) are linked with differgmwth strategies. If only transport and reactos
considered, the root system grows and ramifiesrdowpto direction and norm of transport velocity,
describing a dichotomic system for example. If Wfbn and reaction are considered, simulation
results are in agreement with density maps of h@megus herringbone root systems for instance.
Considering the combination between the three phena, the root growth dynamics are more
complex depending on which term of equation (1fa¢ored and on the velocity and diffusion
coefficient expressions. Observed and simulatecholyn data of eucalyptus root systems were also
considered for evaluating our PDE model (FigureSijnulation results are shown only considering
one part of the whole root system, i.e. a singlézbatal root bearing a dense network of fine roots
(Figure 1B). The density map of apex humber peawa unit were extracted from these data (Figure
| 1C) and compared to the numerical approximatioriop@ed by the model (Figure 1D). An early
stage of the root development, i.e. before thé §edf-pruning of lateral roots, is presented gufie
1D, considering only diffusion and reaction operatwith Dy = 0,15 m2.montH, Dx = Om2.month™
and C(t) constant. These coefficients were estitdhaseng the total and local apices number provided
by the architectural model.

Conclusion and Per spectives

This work aimed to show that a single PDE can beege enough to simulate the growth of dense
root networks that follow different modes of dey@teent. Beyond its interest for solving numerically
the problem, the splitting method also constitutepowerful approach to separate growth and
development into different physical processes, twiian be more or less relevant according to the
expected output. For instance, Dupial. (2010) pointed out that transport equations affecgnt to
simulate the wave displacement of root tips.
Application of such PDE model to more complex treet systems can be also performed at different
scales. It is for instance possible to considemthele root system as an assembly of multi-souotes
dense roots borne by a skeleton of coarse roothidrcase, a hybrid approach can be used that make
the coupling between EDPs at different points okfroot emergence and an architectural model
(Jourdan and Rey, 1997a; Pagesl., 2004). It will be also interesting to test fuaththe model in
non-homogeneous conditions making the coupling witter transfer equations commonly used to
calculate nutriment concentration and water movenwethin the soil. Our approach has been
| designed to address such kind of issues.
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Figure 1: (A) Eucalyptus root system simulated by AMAPsif8) @ single horizontal exploring root bearing
fine roots, after 10 months of growth; (C) Dengityap of apex number per volume unit extracted frowot r
architecture (B); (D) Density map of apex number peit volume predicted by the PDE model; the domai
units are in m.
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