Délimitation automatique des cernes dans des images optiques de coupe de bois :

Contour actif et analyse en ondelettes complexes.

Pol Kennel, Philippe Borianne, Gérard Subsol

24 Juin 2013 Séminaire "Imagerie pour les Plantes et les Paysages" (I2P) de l'AMAP.

Introduction	Méthodes	Résultats	Conclusion
Plan			

2 Méthodes

3 Résultats

4 Conclusion

< ロ > < 合 > < き > < き > 、 き > うへの

Etude anatomique du bois :

Mesures de structures : nœuds, moelle, cernes, rayons... etc. [BLC⁺12, LMK⁺12, Nor11]

Enjeux en dendrologie :

- Suivi de croissance
- Suivi de biomasse

Stockage carbone

Datation

Introduction

Les cernes : marquent le rythme de croissance des arbres.

Comptage, délimitations, mesures...

FIGURE: Cerne à échelle micro (gauche) et macro (droite).

Résultats

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction

FIGURE: Exemples de photos d'Abies alba.

Int	0		-1		
	-	u.			

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Résultats

Conclusion

Méthode

Choix des contours actifs basé sur le travail préliminaire de [BPS11].

FIGURE: Résultats préexistants obtenus sur images Rx - ANR bio-énergie Emerge.

Défauts majeurs :

- détection de la moelle pour filtrage anisotrope
- coût de calcul important

Méthodes

Résultats

Conclusion

Contour actif

Courbe décrit dans une image évoluant sous la contrainte de forces interne et externe :

$$E_{snake} = \int_0^1 \left\{ E_{int}[\mathbf{v}(s)] + E_{image}[\mathbf{v}(s)] \right\} ds$$

La courbe se stabilise par une contrainte énergétique minimale.

FIGURE: Extrait de [XP98]

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Contour actif - Plusieurs formalismes

"point-based active contour" : définition de l'évolution successive de chaque point composant la ligne polygonale du contour.

- simple et intuitif
- rapide

$$P_i^{t+1} = P_i^t + (1 - \gamma)(P_i^t - P_i^{t-1}) + \alpha_i Fint_i + \beta_i Fext_i$$

FIGURE: Formulation d'origine [DM00]

Nous définissons la force externe :

$$\forall i \in \{1, \dots, n\} \ Fext_i = \frac{1}{2} (\Delta v_i + \frac{|d_i|}{d_{max}}) \ w_i$$

Transformée en ondelettes complexes

Analyse spatio-fréquentielle :

Décompose un signal avec fonctions d'ondelettes données par dilatation et translation d'une fonction mère.

FIGURE: Q-Shift DT-CWT [Kin01, Riv00, SBK05]

- Plus de selectivité (6 orientations), et bonne localisation fréquentielle
- Performante et compacte
- Invariance à la translation et reconstruction parfaite

Résultats

Conclusion

Transformée en ondelettes complexes

Utilisation des Inter Coeffient Product (ICP), rend utilisable l'information comprise dans la phase [Andersen, 2005].

(a)

(b)

FIGURE: Illustration des ICP pour le niveau 3 de décomposition pour toutes les orientations.

Résultats

Conclusion

Transformée en ondelettes complexes

Toutes sous-bandes complexes (échelles et orientations) résultant de la DT-CWT sont résumées en une carte de gradient :

$$\begin{split} \arg(\psi_f(x,y)) &= \arg(\sum_n^N (|\psi_n(x,y)| \times \arg(\psi_n(x,y)))) \\ &|\psi_f(x,y)| = \sum_n^N |\psi_n(x,y)| \end{split}$$

FIGURE: Carte de "gradient" servant ensuite de force externe dans notre modèle de contour actif

 	-		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Résultats

Conclusion

Résultats - soumis dans Computers and Electronics in Agriculture

FIGURE: Résultat sur image synthétique bruitée : (a) position départ, convergence obtenue avec force externe basée Sobel (b) et DT-CWT (c).

Résultats - soumis dans Computers and Electronics in Agriculture

FIGURE: Détection simple de cernes sur difficultés.

FIGURE: Détection multiple de cernes. Convergence alternée de cernes (rouge)et d'inter cernes (bleu).

Résultats

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Résultats - soumis dans Computers and Electronics in Agriculture

FIGURE: Détection de cernes sur rondelles entières (a) 10 ans (b) 31 ans.

Résultats - soumis dans Computer and Electronics in Agriculture

FIGURE: Comparaison avec mesures expertes : (a) aires, (b) intersection, (a) circularité, (b) rondeur, (c) solidité, (d) diamètre de ferret.

Int	0		-1		
	-	u.			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Conclusion & perspectives

Résultats satisfaisants pour des résolutions suffisantes, faible temps de calcul.

- Images de natures différentes (scanner optique, Rayon X, etc.)
- Essences de bois différentes : complexité différente

- Amélioration des marqueurs, intégration de la couleur.
- Mesures et validation sur jeux de donné conséquent.

Résultats

Conclusion

Merci

・ロト ・日本・ ・日本・ ・日本・ シック

H. Boukadida, F. Longuetaud, F. Colin, C. Freyburger, T. Constant, J.M. Leban, and F. Mothe.

Pithextract : A robust algorithm for pith detection in computer tomography images of wood – application to 125 logs from 17 tree species.

Computers and Electronics in Agriculture, 85(0) :90 – 98, 2012.

P. Borianne, R. Pernaudat, and G. Subsol.

Automated delineation of tree-rings in x-ray computed tomography images of wood.

In Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 437-440, 2011.

- H. Delingette and J. Montagnat.

Shape and topology constraints on parametric active contours. Computer Vision and Image Understanding, 83 :140–171, 2000.

N.G. Kingsbury.

Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 10(3) :234–253, 2001.

F. Longuetaud, F. Mothe, B. Kerautret, A. Krähenbühl, L. Hory, J.M. Leban, and I. Debled-Rennesson.

Automatic knot detection and measurements from x-ray {CT} images of wood : A review and validation of an improved algorithm on softwood samples.

Computers and Electronics in Agriculture, 85(0) :77 – 89, 2012.

K. Norell.

Automatic counting of annual rings on pinus sylvestris end faces in sawmill industry.

Computers and Electronics in Agriculture, 75(2):231 – 237, 2011.

P. De Rivaz.

Complex wavelet based image analysis and synthesis. PhD thesis, University of Cambridge, 2000.

I.W. Selesnick, R.G. Baraniuk, and N.G. Kingsbury. The dual-tree complex wavelet transform. *IEEE Signal Processing Magazine*, 22(6) :123–151, 2005.

Chenyang Xu and J.L. Prince.

Snakes, shapes, and gradient vector flow.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Image Processing, IEEE Transactions on, 7(3):359–369, 1998.