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Earth Observation Data (EOD)
EOD allows to collect Satellite Image Time Series (SITS)

The same geographical area is observed during the time 

SITS data are useful to analyze spatio-temporal phenomena (trends and changes) over 
the time
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Deep Learning Techniques

AutoEncoder Networks [LeCun15] : 
- Interesting approaches to extract compressed data representation 
- Current state-of-the-art for supervised image segmentation

Not widely exploited in  
Remote Sensing

Recurrent Neural Networks [Greff16]: 
- Useful tool to deal with temporal and sequence data 
- Mainly explored in Speech Recognition and Natural 

Language Processing
Not yet Well Known in  

Remote Sensing

[Greff16] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, Jürgen Schmidhuber: LSTM: A Search Space Odyssey. CoRR abs/1503.04069 (2015) 
[Zhang16] L. Zhang, L. Zhang and B. Du, “Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art”. IEEE Geosc. and Rem. Sens. Magazine: 4(2): 22-40 
(2016).                                                                                                                                                                                                                                                                              
[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015) 

CNNs [Zhang16]: 
- Convolutional approaches (1-D, 2-D and 3-D) 
- Very useful to manage and deal with Spatial 

Information 
- Current best performances in Image 

Classification Starting to be known in  
Remote Sensing
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Recurrent Neural Networks
Domain in which RNNs are successful: 

Speech recognition, Natural language 
processing (i.e. Automatic Translation 
between Languages), Image completion 

The principle of recurrent neural networks is 
to use the results produced at time t-1 to 
feed the network at time t

5

Image 
classification

Image  
captioning

Sentiment  
analysis

Machine 
translation

Synced sequence(video 
classification)



Recurrent Neural Networks
The most famous model is LSTM (Long-Short Term Memory) [Greff16]: 

• It explicitly captures temporal correlations by recursion 
• It is able to extract the important signal portions forgetting irrelevant information

X= <X1, X2, …, Xn>

X1 X2 X3 Xn-2 Xn-1 Xn

[Greff16] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, Jürgen Schmidhuber: LSTM: A Search Space Odyssey. CoRR abs/1503.04069 (2015) 

Each Xi is a multi-dimensional vector that contains some information
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Recurrent Neural Networks 
& 

Satellite Image Time Series

[Bengio13] Y. Bengio, A. C. Courville, P. Vincent: Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828 (2013) 

Advantages w.r.t. Standard ML Classifiers
Standard ML Classifier (i.e. RF and SVM):

- Do not model temporal correlations (Features are managed independently) 
- Only original features are considered  

LSTMs (RNNs):
- Explicitly model temporal dependencies 
- Learning at once classifier and new data representation [Bengio13] tailored for 

the discriminative task

In the Remote Sensing field (SITS data), the data 
sequence is the multi-dimensional time series of 
radiometric information of a pixel along the 
different images.

Satellite Image Time Series
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Case studies
Thau Dataset:

3 Pléiades VHSR images (2~m) acquired (July 2012 - 
March 2013). Object-Oriented Classification (Multi-
temporal objects). Information: R,B,G, NIR, NDVI 
(avg+std). Around 15k objects.
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Sigmoid layer since we know that our samples exclusively
belong to a single class. From an architectural point of view,
the connection between the LSTM and the SoftMax layer is
realized fully connecting the last hidden state vector produced
by the LSTM unit with the SoftMax neurons.

C. Representation Learning with LSTM for time series data
Standard deep learning approaches can also be seen as a

way to produce a new, more discriminative representation of
the original data [3]. Another way to assess the quality of our
deep architecture for the land cover classification task is to use
the features learned by the last LSTM unit to feed a standard
classifier. We propose to employ the last hidden state vector,
produced by the last LSTM unit, as new data representation
and, successively, train standard machine learning classifiers
over such new set of features. The last hidden layer represents
a flat (no temporal order is involved) summary of the temporal
profile of the times series. More precisely, this summary (set of
learned features) contains only the useful and high-level signal
to remind w.r.t. the classification task. This temporal-free
representation can be used to feed standard machine learning
classifiers (Random Forest, Naive Bayes, KNN, SVMs) that
are not able to explicitly consider temporal dependencies
between input variables.

III. DATA

In order to prove the generality of our proposal, it has been
tested over two different remote-sensing based datasets. The
first is a collection of spatial objects described by a set regional
statistics extracted from very high spatial resolution imagery
(VHSR), but with a limited temporal depth. The second one
is a pixel-based dataset, more noisy but richer in both spectral
and temporal resolution. Detailed descriptions are provided in
the following subsections.

A. THAU dataset
The first dataset has been generated using a time series

of Pléiades VHSR images (2 m) acquired in the context of
the Airbus DS/Spot Image distribution (July and September
2012, March 2013, c� CNES). The study site is the THAU
Basin located in the South of France, close to Montpellier.
It covers an area of 42 000 ha with 70% of land area. The
north is mainly composed of agricultural fields (i.e. vineyards)
and natural spaces while the south is dominated by urban and
industrial zones. For each date, two orthorectified, atmospher-
ically corrected scenes are mosaicked.

Using the multi-temporal stack, a segmentation has been
performed to extract a consistent multi-temporal object layer.
Segmentation was performed using the Multiresolution Seg-
mentation technique [2] available in the eCognition Developer
software 1. Each object has been then featured using statistical
mean and standard deviation using the four native bands (blue,
green, red and near-infrared) and the NDVI. A total of 10
features are computed per object and per date (5 means and
5 standard deviations).

1http://www.ecognition.com/suite/ecognition-developer

The so obtained segments have been subsequently filtered
and labeled in 11 different classes by visual inspection. A
total of 15 196 objects is retained. The set of classes with the
relative cardinality is reported in Table I.

ID Land Cover Class N. of Objects
(1) Tree crops 600
(2) Forests and woods 2 445
(3) Water 556
(4) Summer crops 81
(5) Winter crops 677
(6) Grasslands 3 882
(7) Sclerophyll vegetation 2 457
(8) Truck farming 227
(9) Bare soils 299
(10) Salt marshes 236
(11) Vineyards 3 735

TABLE I
LAND COVER CLASSES AND THEIR CARDINALITY FOR THE THAU TIME

SERIES DATASET

B. REUNION ISLAND dataset

The second dataset has been generated from an annual time
series of 23 Landsat 8 images acquired in 2014 above the Re-
union Island (2866 ⇥ 2633 pixels at 30 m spatial resolution),
provided at level 2A2. Source data have been further processed
to fill cloudy observations via pixel-wise multi-temporal linear
interpolation on each multi-spectral band (OLI) independently,
and the computed complimentary radiometric indices (NDVI,
NDWI and brightness index - BI). A total of 10 features (7
surface reflectances plus 3 indices) are considered for each
pixel at each timestamp.

Reference land cover data has been built using two publicly
available dataset, namely the 2012 Corine Land Cover (CLC)
map and the 2014 farmers’ graphical land parcel registration
(Régistre Parcellaire Graphique - RPG). The most significant
classes for the study area have been retained, and a spatial
processing (aided by photo-interpretation) has also been per-
formed to ensure consistency with image geometry. Finally, a
pixel-based random sampling of this dataset has been applied
to provide an almost balanced ground truth. The final reference
dataset consists of a total of 37 900 pixels distributed over 9
classes as reported in Table II.

ID Land Cover Class N. of Pixels
(1) Urban areas 10 000
(2) Other built-up surfaces 1 500
(3) Forests 10 000
(4) Sparse Vegetation 5 095
(5) Rocks and bare soil 3 729
(6) Grassland 1 744
(7) Sugarcane crops 2 832
(8) Other crops 1 500
(9) Water 1 500

TABLE II
REUNION ISLAND

2The source data are provided by the French Pôle Thématique Surfaces
Continentales THEIA (www.theia-land.fr) and preprocessed by the Multi-
sensor Atmospheric Correction and Cloud Screening (MACCS) level 2A
processor [10] developed at the French National Space Agency (CNES) to
provide accurate atmospheric, environmental and geometric corrections as
well as precise cloud masks.

Reunion Dataset:
23 Landsat8 images acquired in 2014 (30~m), level 2A 
and preprocessed by MAACS (CNES). Pixel-Oriented 
Classification. Information: (7 surface reflectances + 
NDVI, NDWI and brightness index - BI). Around 37K 
pixels.
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processing (aided by photo-interpretation) has also been per-
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(2) Other built-up surfaces 1 500
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[Ienco17] D. Ienco, R. Gaetano, P. Maurel and C. Dupaquier: “Land Cover Classification via Multi- temporal Spatial Data by Recurrent Neural Networks”. IEEE Geoscience and Remote 
Sensing Letters - Minor Revision - (2017) 8



Experimental Settings

Methods:
- Our Proposal - LSTM (3 stacked neurons) + SoftMax Layer  

- Dim. Hidden vector 64 (Thau Dataset) and 512 (Réunion Island) 
- Random Forest (400 trees) 
- SVM (RBF - Complexity = 100 and Sigma = 0.01) 

Use Deep Model (LSTM) as feature extractor: 
- RF(LSTM) 
- SVM(LSTM) 

Evaluation:
- 5 Fold Cross Validation (Training/Test) 
- Different evaluation measures: 

- Accuracy 
- F-Measure (F-Measure x Class) 
- Kappa
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Results on Thau Dataset
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IV. EXPERIMENTAL RESULTS

In this section, we report the experimental settings and
discuss the results obtained using the two SITS datasets
presented in Section III.

A. Experimental Settings

We compare the LSTM-based Time Series Classification
model to standard machine learning approaches commonly
employed to perform land cover classification from multi-
temporal spatial data [7], [11]. We also assess the value of
the representation learned by the proposed model following
the idea described in Section II-C.

We use Random Forest (RF) and Support Vector Machine
(SVM) as standard classification strategies. For the RF model,
we set the number of generated trees equals to 400 and we
allow a maximum tree depth of 10. For the SVM model
we use RBF kernel with complexity parameter and gamma
equal to 100 and 0.01 respectively. For Random Forest we
used the python implementation supplied by the Scikit-learn
library [15] while for SVM we use the LibSVM implemen-
tation [4]. The same RF and SVM settings are used for both
original data and the new representation learned by the LSTM-
Based Time Series Classification model. For the latter, we
set the number of hidden dimensions equals to 64 (resp.
512) for the THAU (resp. REUNION ISLAND) dataset. An
initial learning rate of 5 ⇥ 10�4 and a decay of 5 ⇥ 10�5

is employed. We have implemented the model via the Keras
python library [5] with Theano as back end. To train the
model we have used the Rmsprop strategy that is a variant
of the Stochastic Gradient Descent commonly employed to
train LSTM units [6]. The loss function being optimized is
the categorical cross-entropy that is the standard loss function
for multi-class classification tasks [18]. The built models have
obtained an average loss value (on the training set) of 1.8 ⇥
10�2 and 3.2 ⇥ 10�3 on the THAU and REUNION ISLAND
datasets, respectively. The trainig step takes, on average, 6
minutes (resp. 204 minutes) to learn the model on the THAU
(resp. REUNION ISLAND) dataset on a workstation with
Intel(R) Xeon(R) CPU E5-2667 v4@3.20Ghz with 256Gb of
RAM and GPU TITAN X.

The model is trained for 200 epochs with a batch size
equals to 20. We named RF(LSTM) (resp. SVM(LSTM)) the
Random Forest (resp. SVM) learned over the new feature space
induced by our RNN model. Each training and test instance
is transformed into a 512 feature vector (the dimension of
the hidden state of the LSTM neuron) and, successively, the
classifiers are trained using this new representation.

To validate the different methods, we perform a 5-fold cross
validation. More in detail, for each fold, the classification
model is trained on 12 156 (resp. 30 320) examples and tested
on 3 039 (resp. 7 580) instances for the THAU (resp. Reunion
Island) dataset. Due to the unbalanced nature of the two time
series datasets, in order to assess classification performances
we use not only the Global Accuracy and Kappa measures,
but we also provide average and per-class F-Measure.

B. Results and Discussions

The Tables III and IV and Figures 3 and 4 summarize the
results we have obtained on the two SITS datasets. Consid-
ering the THAU dataset, Table III depicts the average values
of Accuracy, F-Measure and Kappa for the different methods.
We can observe that the LSTM-based classifier outperforms
both RF and SVM approaches regarding all the three metrics.
Interestingly, we can highlight that, for the THAU dataset, the
classifiers trained on the features (representation) learned by
the Recurrent Neural Network RF(LSTM) and SVM(LSTM)
exhibit better performances than the same classifiers coupled
with the original time series data considering all the three
evaluation metrics. Both RF and SVM clearly benefit from the
new data representation.

A more detailed assessment is provided in Figure 3 where
the per-class F-Measure is reported. The first point we can
highlight is that, for classes with few reference samples
(i.e. (1),(4),(8) and (10)), the LSTM network neatly outper-
forms standard approaches which, in some cases (i.e. (1) and
(4)) completely miss the classes. Regarding well represented
classes, it obtains similar or slightly better results w.r.t. RF and
SVM. The second point is related to the comparison between
standard approaches trained on the original data and the same
methods powered by features learned by our proposal. We can
note that the use of the new learned representation improves
the performances of both RF and SVM. Again, this fact is
particularly evident on critical classes like (1),(4),(8) and (10).

Method Accuracy F-Measure Kappa
RF 74.28% ± 0.75% 71.67% ± 0.74% 0.68 ± 0
SVM 72.43% ± 0.74% 69.83% ± 0.63% 0.65 ± 0
LSTM 75.18% ± 0.61% 74.57% ± 0.59% 0.69 ± 0
RF(LSTM) 75.80% ± 0.36% 74.24% ± 0.40% 0.70 ± 0
SVM(LSTM) 74.10% ± 0.40% 73.72% ± 0.42% 0.68 ± 0

TABLE III
5-FOLD CROSS VALIDATION ON THE THAU DATASET

Fig. 3. Per Class F-Measure of the different approaches on the THAU dataset.

Table IV summarizes the results on the REUNION ISLAND
time series dataset. Similarly to the previous case, the LSTM-
based classifier behaves better than the standard machine
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Sigmoid layer since we know that our samples exclusively
belong to a single class. From an architectural point of view,
the connection between the LSTM and the SoftMax layer is
realized fully connecting the last hidden state vector produced
by the LSTM unit with the SoftMax neurons.

C. Representation Learning with LSTM for time series data
Standard deep learning approaches can also be seen as a

way to produce a new, more discriminative representation of
the original data [3]. Another way to assess the quality of our
deep architecture for the land cover classification task is to use
the features learned by the last LSTM unit to feed a standard
classifier. We propose to employ the last hidden state vector,
produced by the last LSTM unit, as new data representation
and, successively, train standard machine learning classifiers
over such new set of features. The last hidden layer represents
a flat (no temporal order is involved) summary of the temporal
profile of the times series. More precisely, this summary (set of
learned features) contains only the useful and high-level signal
to remind w.r.t. the classification task. This temporal-free
representation can be used to feed standard machine learning
classifiers (Random Forest, Naive Bayes, KNN, SVMs) that
are not able to explicitly consider temporal dependencies
between input variables.

III. DATA

In order to prove the generality of our proposal, it has been
tested over two different remote-sensing based datasets. The
first is a collection of spatial objects described by a set regional
statistics extracted from very high spatial resolution imagery
(VHSR), but with a limited temporal depth. The second one
is a pixel-based dataset, more noisy but richer in both spectral
and temporal resolution. Detailed descriptions are provided in
the following subsections.

A. THAU dataset
The first dataset has been generated using a time series

of Pléiades VHSR images (2 m) acquired in the context of
the Airbus DS/Spot Image distribution (July and September
2012, March 2013, c� CNES). The study site is the THAU
Basin located in the South of France, close to Montpellier.
It covers an area of 42 000 ha with 70% of land area. The
north is mainly composed of agricultural fields (i.e. vineyards)
and natural spaces while the south is dominated by urban and
industrial zones. For each date, two orthorectified, atmospher-
ically corrected scenes are mosaicked.

Using the multi-temporal stack, a segmentation has been
performed to extract a consistent multi-temporal object layer.
Segmentation was performed using the Multiresolution Seg-
mentation technique [2] available in the eCognition Developer
software 1. Each object has been then featured using statistical
mean and standard deviation using the four native bands (blue,
green, red and near-infrared) and the NDVI. A total of 10
features are computed per object and per date (5 means and
5 standard deviations).

1http://www.ecognition.com/suite/ecognition-developer

The so obtained segments have been subsequently filtered
and labeled in 11 different classes by visual inspection. A
total of 15 196 objects is retained. The set of classes with the
relative cardinality is reported in Table I.

ID Land Cover Class N. of Objects
(1) Tree crops 600
(2) Forests and woods 2 445
(3) Water 556
(4) Summer crops 81
(5) Winter crops 677
(6) Grasslands 3 882
(7) Sclerophyll vegetation 2 457
(8) Truck farming 227
(9) Bare soils 299
(10) Salt marshes 236
(11) Vineyards 3 735

TABLE I
LAND COVER CLASSES AND THEIR CARDINALITY FOR THE THAU TIME

SERIES DATASET

B. REUNION ISLAND dataset

The second dataset has been generated from an annual time
series of 23 Landsat 8 images acquired in 2014 above the Re-
union Island (2866 ⇥ 2633 pixels at 30 m spatial resolution),
provided at level 2A2. Source data have been further processed
to fill cloudy observations via pixel-wise multi-temporal linear
interpolation on each multi-spectral band (OLI) independently,
and the computed complimentary radiometric indices (NDVI,
NDWI and brightness index - BI). A total of 10 features (7
surface reflectances plus 3 indices) are considered for each
pixel at each timestamp.

Reference land cover data has been built using two publicly
available dataset, namely the 2012 Corine Land Cover (CLC)
map and the 2014 farmers’ graphical land parcel registration
(Régistre Parcellaire Graphique - RPG). The most significant
classes for the study area have been retained, and a spatial
processing (aided by photo-interpretation) has also been per-
formed to ensure consistency with image geometry. Finally, a
pixel-based random sampling of this dataset has been applied
to provide an almost balanced ground truth. The final reference
dataset consists of a total of 37 900 pixels distributed over 9
classes as reported in Table II.

ID Land Cover Class N. of Pixels
(1) Urban areas 10 000
(2) Other built-up surfaces 1 500
(3) Forests 10 000
(4) Sparse Vegetation 5 095
(5) Rocks and bare soil 3 729
(6) Grassland 1 744
(7) Sugarcane crops 2 832
(8) Other crops 1 500
(9) Water 1 500

TABLE II
REUNION ISLAND

2The source data are provided by the French Pôle Thématique Surfaces
Continentales THEIA (www.theia-land.fr) and preprocessed by the Multi-
sensor Atmospheric Correction and Cloud Screening (MACCS) level 2A
processor [10] developed at the French National Space Agency (CNES) to
provide accurate atmospheric, environmental and geometric corrections as
well as precise cloud masks.
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learning methods considering Accuracy and F-Measure; still
in line with the previous results, also the classifiers trained
on the new learned features clearly outperform their counter-
parts trained on the original data. Conversely to the previous
experiment, in this case the highest values (Accuracy, F-
Measure and Kappa) are reached by the SVM(LSTM) but
we can observe that the LSTM-based classifier still obtains
competitive results. Figure 4 reports the per-class F-Measure
results on the REUNION ISLAND dataset. Also in this case
we can note that the LSTM-based approach works well for low
represented and difficult classes (i.e. (8) - ”Other Crops”) as
well as for all the other classes.

As expected, the combined optimization and learning of a
new feature representation along with the classifier provides in
the case of SITS data a valuable strategy to discriminate among
the different classes. All these results indicate that the LSTM
model is well suited to extract long-short temporal dependen-
cies as opposed to common classification approaches that do
not explicitly leverage temporal correlations. This is partic-
ularly evident on low represented and highly mixed classes:
Tree Crops, Summer crops and Truck Farming (resp. Other
Crops) for the THAU (resp. REUNION ISLAND) dataset.

All these classes are related to agricultural activities whose
temporal patterns are strongly heterogeneous due to the differ-
ent practices. This variability makes the corresponding classes
detectable only considering different (per class) and non-
contiguous signals of the time series in which crop conditions
are comparable. This is why the LSTM approach is well
suited for this kind of applications since it is able to extract
and summarize the important signal portions that support the
discriminative task.

Method Accuracy F-Measure Kappa
RF 81.19% ± 0.72% 79.40% ± 0.75 0.77 ± 0
SVM 81.59% ± 0.47% 80.01% ± 0.43% 0.77 ± 0
LSTM 86.23% ± 0.62% 86.11% ± 0.58% 0.83 ± 0
RF(LSTM) 86.15% ± 0.50% 85.97% ± 0.48% 0.83 ± 0
SVM(LSTM) 86.41% ± 0.60% 86.23% ± 0.56% 0.83 ± 0

TABLE IV
5-FOLD CROSS VALIDATION ON THE REUNION ISLAND DATASET

Fig. 4. Per Class F-Measure of the different approaches on the REUNION
ISLAND dataset.

V. CONCLUSION

In this letter we asses the benefit of using RNNs (LSTM)
to perform land cover classification via multi-temporal spatial
data. We have validated the proposed model on two different
SITS datasets showing that our framework efficiently deals
with both pixel and object-based classification.

The proposed framework shows competitive results com-
pared to classical approaches, with the remarkable advantage
of improving the prediction quality on “weak” classes from
unbalanced datasets.
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Measure and Kappa) are reached by the SVM(LSTM) but
we can observe that the LSTM-based classifier still obtains
competitive results. Figure 4 reports the per-class F-Measure
results on the REUNION ISLAND dataset. Also in this case
we can note that the LSTM-based approach works well for low
represented and difficult classes (i.e. (8) - ”Other Crops”) as
well as for all the other classes.

As expected, the combined optimization and learning of a
new feature representation along with the classifier provides in
the case of SITS data a valuable strategy to discriminate among
the different classes. All these results indicate that the LSTM
model is well suited to extract long-short temporal dependen-
cies as opposed to common classification approaches that do
not explicitly leverage temporal correlations. This is partic-
ularly evident on low represented and highly mixed classes:
Tree Crops, Summer crops and Truck Farming (resp. Other
Crops) for the THAU (resp. REUNION ISLAND) dataset.

All these classes are related to agricultural activities whose
temporal patterns are strongly heterogeneous due to the differ-
ent practices. This variability makes the corresponding classes
detectable only considering different (per class) and non-
contiguous signals of the time series in which crop conditions
are comparable. This is why the LSTM approach is well
suited for this kind of applications since it is able to extract
and summarize the important signal portions that support the
discriminative task.
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Fig. 4. Per Class F-Measure of the different approaches on the REUNION
ISLAND dataset.

V. CONCLUSION

In this letter we asses the benefit of using RNNs (LSTM)
to perform land cover classification via multi-temporal spatial
data. We have validated the proposed model on two different
SITS datasets showing that our framework efficiently deals
with both pixel and object-based classification.

The proposed framework shows competitive results com-
pared to classical approaches, with the remarkable advantage
of improving the prediction quality on “weak” classes from
unbalanced datasets.
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Sigmoid layer since we know that our samples exclusively
belong to a single class. From an architectural point of view,
the connection between the LSTM and the SoftMax layer is
realized fully connecting the last hidden state vector produced
by the LSTM unit with the SoftMax neurons.

C. Representation Learning with LSTM for time series data
Standard deep learning approaches can also be seen as a

way to produce a new, more discriminative representation of
the original data [3]. Another way to assess the quality of our
deep architecture for the land cover classification task is to use
the features learned by the last LSTM unit to feed a standard
classifier. We propose to employ the last hidden state vector,
produced by the last LSTM unit, as new data representation
and, successively, train standard machine learning classifiers
over such new set of features. The last hidden layer represents
a flat (no temporal order is involved) summary of the temporal
profile of the times series. More precisely, this summary (set of
learned features) contains only the useful and high-level signal
to remind w.r.t. the classification task. This temporal-free
representation can be used to feed standard machine learning
classifiers (Random Forest, Naive Bayes, KNN, SVMs) that
are not able to explicitly consider temporal dependencies
between input variables.

III. DATA

In order to prove the generality of our proposal, it has been
tested over two different remote-sensing based datasets. The
first is a collection of spatial objects described by a set regional
statistics extracted from very high spatial resolution imagery
(VHSR), but with a limited temporal depth. The second one
is a pixel-based dataset, more noisy but richer in both spectral
and temporal resolution. Detailed descriptions are provided in
the following subsections.

A. THAU dataset
The first dataset has been generated using a time series

of Pléiades VHSR images (2 m) acquired in the context of
the Airbus DS/Spot Image distribution (July and September
2012, March 2013, c� CNES). The study site is the THAU
Basin located in the South of France, close to Montpellier.
It covers an area of 42 000 ha with 70% of land area. The
north is mainly composed of agricultural fields (i.e. vineyards)
and natural spaces while the south is dominated by urban and
industrial zones. For each date, two orthorectified, atmospher-
ically corrected scenes are mosaicked.

Using the multi-temporal stack, a segmentation has been
performed to extract a consistent multi-temporal object layer.
Segmentation was performed using the Multiresolution Seg-
mentation technique [2] available in the eCognition Developer
software 1. Each object has been then featured using statistical
mean and standard deviation using the four native bands (blue,
green, red and near-infrared) and the NDVI. A total of 10
features are computed per object and per date (5 means and
5 standard deviations).

1http://www.ecognition.com/suite/ecognition-developer

The so obtained segments have been subsequently filtered
and labeled in 11 different classes by visual inspection. A
total of 15 196 objects is retained. The set of classes with the
relative cardinality is reported in Table I.

ID Land Cover Class N. of Objects
(1) Tree crops 600
(2) Forests and woods 2 445
(3) Water 556
(4) Summer crops 81
(5) Winter crops 677
(6) Grasslands 3 882
(7) Sclerophyll vegetation 2 457
(8) Truck farming 227
(9) Bare soils 299
(10) Salt marshes 236
(11) Vineyards 3 735

TABLE I
LAND COVER CLASSES AND THEIR CARDINALITY FOR THE THAU TIME

SERIES DATASET

B. REUNION ISLAND dataset

The second dataset has been generated from an annual time
series of 23 Landsat 8 images acquired in 2014 above the Re-
union Island (2866 ⇥ 2633 pixels at 30 m spatial resolution),
provided at level 2A2. Source data have been further processed
to fill cloudy observations via pixel-wise multi-temporal linear
interpolation on each multi-spectral band (OLI) independently,
and the computed complimentary radiometric indices (NDVI,
NDWI and brightness index - BI). A total of 10 features (7
surface reflectances plus 3 indices) are considered for each
pixel at each timestamp.

Reference land cover data has been built using two publicly
available dataset, namely the 2012 Corine Land Cover (CLC)
map and the 2014 farmers’ graphical land parcel registration
(Régistre Parcellaire Graphique - RPG). The most significant
classes for the study area have been retained, and a spatial
processing (aided by photo-interpretation) has also been per-
formed to ensure consistency with image geometry. Finally, a
pixel-based random sampling of this dataset has been applied
to provide an almost balanced ground truth. The final reference
dataset consists of a total of 37 900 pixels distributed over 9
classes as reported in Table II.

ID Land Cover Class N. of Pixels
(1) Urban areas 10 000
(2) Other built-up surfaces 1 500
(3) Forests 10 000
(4) Sparse Vegetation 5 095
(5) Rocks and bare soil 3 729
(6) Grassland 1 744
(7) Sugarcane crops 2 832
(8) Other crops 1 500
(9) Water 1 500

TABLE II
REUNION ISLAND

2The source data are provided by the French Pôle Thématique Surfaces
Continentales THEIA (www.theia-land.fr) and preprocessed by the Multi-
sensor Atmospheric Correction and Cloud Screening (MACCS) level 2A
processor [10] developed at the French National Space Agency (CNES) to
provide accurate atmospheric, environmental and geometric corrections as
well as precise cloud masks.
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Discussion and  
Preliminary Findings

• LSTM-based classification model outperforms SVM and RF in the case studies 

• The use of a model that explicitly consider temporal behaviour seems 
important for SITS data classification 

• The major gain is supplied w.r.t. lower represented (and highly mixed) 
classes 

• Features extracted by LSTM seem beneficial for Standard Classifier, RF(LSTM) 
(resp. SVM(LSTM) ) outperforms their counterpart trained on original data 

• The two case studies underline that these techniques can be applied to SITS 
data considering both pixel-based and object-based representation
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Technical and Implementation  
details  

on Experiments

• The Deep RNNs classifier are implemented in KERAS 
• We employ Theano as Backend 
• Experiments are performed on Server with Intel(R) Xeon(R) CPU E5-2667 

v4@3.20Ghz with 256Gb of RAM and GPU TITAN X Pascal 2

Bigger Dataset:  
• 37900 pixels with 23 * 10 dimensions 
• For each fold (5-Folds CV), we took (on average) 204 minutes to learn a model 
• We train the model for 200 epochs with batch size equals to 20

Smaller Dataset: 
• 15196 objects with 3 * 10 dimensions 
• For each foot (5-Folds CV), we took (on average) 6 minutes to learn a model 
• We train the model for 200 epochs with batch size equals to 20 

For all the models we have used the RMSprop optimisation procedure (variant of SGD)
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Conclusion &  
On-going Works

Considerations:

• The RNNs approaches are still under exploited in the Remote Sensing Field, really 
few works exist as of now (Bitemporal Change Detection [Lyu16], Hyperspectral 
Classification [Mou17]). 

• RS data is different w.r.t. standard Computer Vision data (RGB images) on which 
DL methods were developed: 

• Multi-band informations 
• Different Resolutions, Different Sensors 
• SITS Data 

• New Applications and New Trends require adapted DL techniques/architectures 
(i.e. LSTM literature mainly comes from NLP domain)

[Lyu16] Haobo Lyu, Hui Lu, Lichao Mou: 
Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sensing 8(6): 506 (2016) 
[Mou17] L. Mou, P. Ghamisi, X. X. Zhu, "Deep Recurrent Neural Networks for Hyperspectral Image Classification", IEEE Transactions on Geoscience and Remote Sensing X(99): 1 - 17 
(2017) 14



On-going works:

• Considering RNNs to work on Radar Time Series (Sentinel 1): 
• We apply LSTM and GRU in order to produce winter vegetation quality cover 

[Minh17]. 
• Results have shown that LSTM/GRU seems work better than RF and SVM.
• Use LSTM/GRU features still improve quality of the standard classifier. 

• On-going internship on (high resolution - S2) SITS and VHSR (Very High Spatial 
Resolution - Pleiades/SPOT6-7) fusion for Land Cover mapping. Idea coupling RNN 
and CNNs to leverage both temporal and spatial info. 

• Considering RNNs models (DL architectures) to fusion/combine Optical/Radar 
Time Series Data.

On-going Works

[Minh17] D. Ho Tong Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F. Osman, P. Maurel: 
Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. CoRR abs/1708.03694 (2017)15
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Emerging Trends in EOD

Nowadays, Satellite imagery analytic uses Machine 
Learning Techniques to: 
 - Deal with huge amount of data 
 - Automatically build predictive methods 
 - Group together similar areas 
 - Detect Objects of Interest

Recent Trends ‘Deep Learning Methods’ [LeCun15] : 
 - Inspired by human brain 
 - Layers architecture 
 - Applications in different domains: 
  + Speech Recognition 
  + Image Recognition 
  + Natural Language Processing

17[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). 



Deep Learning Techniques
State of the art performances in Image and Signal classification 

Different Family of approaches exist (Feed-Forward and Recurrent) [LeCun15] 

Convolutional Neural Networks (CNNs) [Zhang16]: 
- Convolutional approaches (1-D, 2-D and 3-D) 
- Very useful to manage and deal with Spatial Information 
- Current best performances in Image Classification

Starting to be known in  
Remote Sensing

[Zhang16] L. Zhang, L. Zhang and B. Du, “Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art”. IEEE Geoscience and Remote Sensing Magazine: 4(2): 
22-40 (2016). 
[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). 18


