

Séminaire DL - AMAP 20/10/2017

Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks [lenco17]

<u>Dino Ienco</u>, Raffaele Gaetano, Claire Dupaquier and Pierre Maurel

> Dino lenco, Research Scientist, IRSTEA - UMR TETIS - Montpellier, <u>dino.ienco@irstea.fr</u>

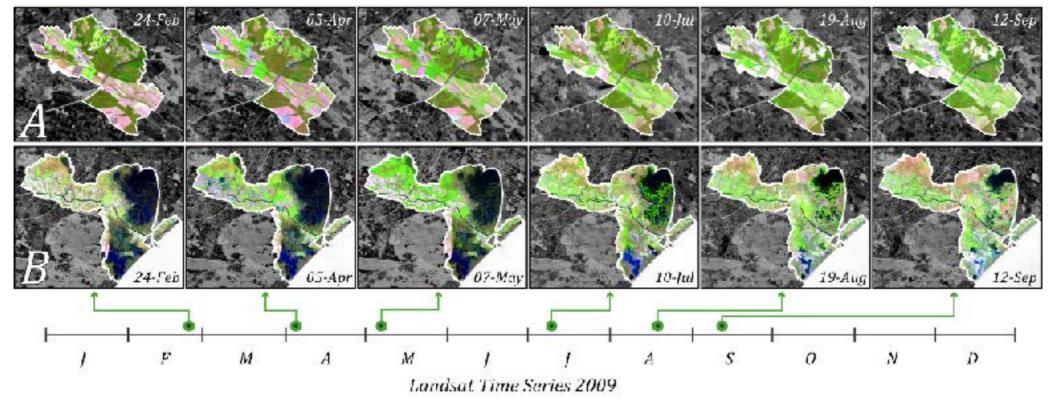
[lenco17] D. Ienco, R. Gaetano, C. Dupaquier, P. Maurel: Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks. IEEE Geosci. Remote Sensing Lett. 14(10): 1685-1689 (2017)

Outline

- Intro to Satellite Image Time Series (SITS) data
- Deep Learning Techniques
- Recurrent Neural Networks (RNNs) & SITS Data
- Case Studies
- Conclusions and On-going Works

EOD allows to collect Satellite Image Time Series (SITS)

The same geographical area is observed during the time



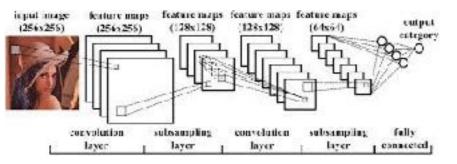
SITS data are useful to analyze spatio-temporal phenomena (trends and changes) over the time

Deep Learning Techniques

CNNs [Zhang16]:

- Convolutional approaches (1-D, 2-D and 3-D)
- Very useful to manage and deal with Spatial Information
- Current best performances in Image Classification

Starting to be known in Remote Sensing

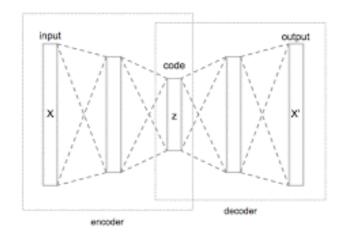


Recurrent Neural Networks [Greff16]: Useful tool to deal with temporal and sequence data Mainly explored in Speech Recognition and Natural Language Processing Not yet Well Known in Remote Sensing

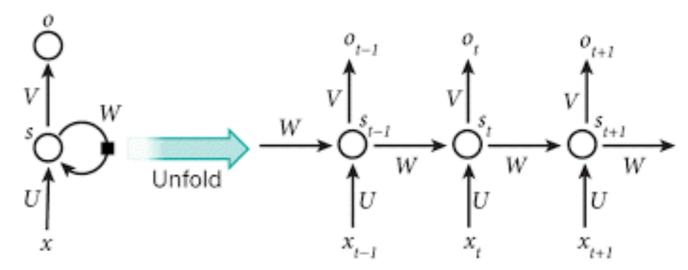
AutoEncoder Networks [LeCun15] :

- Interesting approaches to extract compressed data representation

Current state-of-the-art for supervised image segmentation



Not widely exploited in Remote Sensing



[Greff16] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, Jürgen Schmidhuber: LSTM: A Search Space Odyssey. CoRR abs/1503.04069 (2015) [Zhang16] L. Zhang, L. Zhang and B. Du, "Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art". IEEE Geosc. and Rem. Sens. Magazine: 4(2): 22-40 (2016).

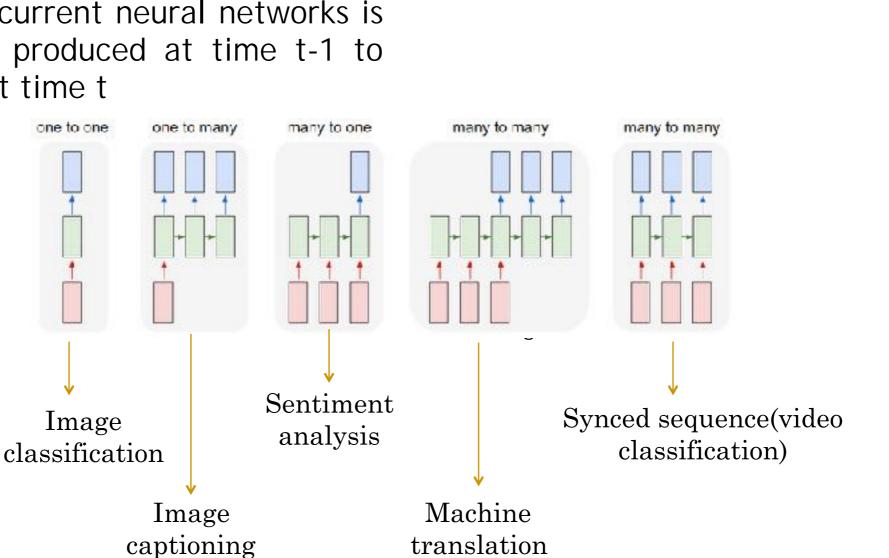
[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. "Deep Learning" In Nature 52(8): 436-444 (2015)

Recurrent Neural Networks

Domain in which RNNs are successful:

Speech recognition, Natural language processing (i.e. Automatic Translation between Languages), Image completion

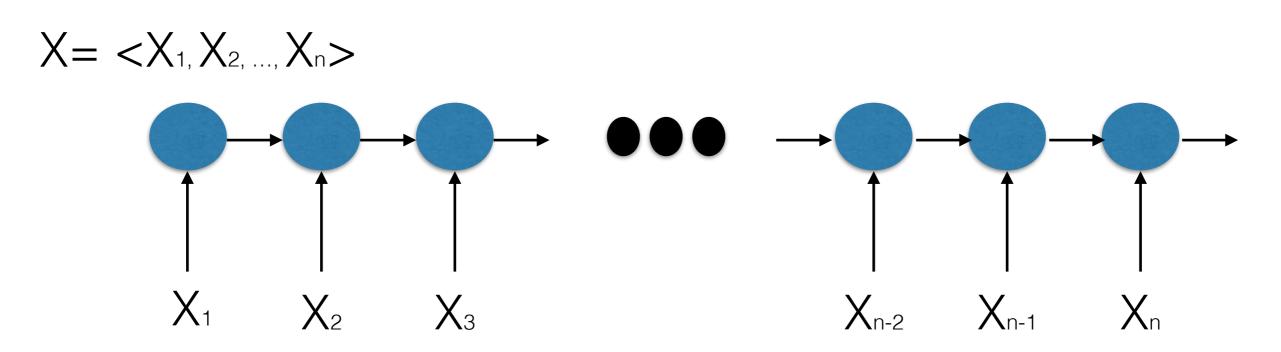
The principle of recurrent neural networks is to use the results produced at time t-1 to feed the network at time t



Recurrent Neural Networks

The most famous model is LSTM (Long-Short Term Memory) [Greff16]:

- It explicitly captures temporal correlations by recursion
- It is able to extract the important signal portions forgetting irrelevant information



Each X_i is a multi-dimensional vector that contains some information

Recurrent Neural Networks & Satellite Image Time Series

Advantages w.r.t. Standard ML Classifiers

Standard ML Classifier (i.e. RF and SVM):

- Do not model temporal correlations (Features are managed independently)
- Only original features are considered

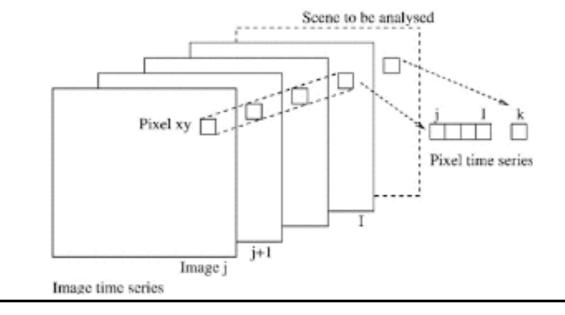
LSTMs (RNNs):

- Explicitly model temporal dependencies
- Learning at once classifier and new data representation [Bengio13] tailored for the discriminative task

Deep Learning

Satellite Image Time Series

In the Remote Sensing field (SITS data), the data sequence is the multi-dimensional time series of radiometric information of a pixel along the different images.



Case studies

N. of Objects

600

2445

556

3 Pléiades VHSR images (2~m) acquired (July 2012 -March 2013). Object-Oriented Classification (Multitemporal objects). Information: R,B,G, NIR, NDVI (avg+std). Around 15k objects.

(3)	water	330
(4)	Summer crops	81
(5)	Winter crops	677
(6)	Grasslands	3 882
(7)	Sclerophyll vegetation	2 4 5 7
(8)	Truck farming	227
(9)	Bare soils	299
(10)	Salt marshes	236
(11)	Vineyards	3 7 3 5

Land Cover Class

Tree crops

Forests and woods

Watar

ID (1)

(2)

(2)

Reunion	Dataset:
---------	----------

23 Landsat8 images acquired in 2014 (30~m), level 2A and preprocessed by MAACS (CNES). Pixel-Oriented Classification. Information: (7 surface reflectances + NDVI, NDWI and brightness index - BI). Around 37K pixels.

ID	Land Cover Class	N. of Pixels
(1)	Urban areas	10 000
(2)	Other built-up surfaces	1 500
(3)	Forests	10 000
(4)	Sparse Vegetation	5 0 9 5
(5)	Rocks and bare soil	3 729
(6)	Grassland	1 744
(7)	Sugarcane crops	2 832
(8)	Other crops	1 500
(9)	Water	1 500

[lenco17] D. lenco, R. Gaetano, P. Maurel and C. Dupaquier: "Land Cover Classification via Multi- temporal Spatial Data by Recurrent Neural Networks". IEEE Geoscience and Remote Sensing Letters - Minor Revision - (2017)

Experimental Settings

Methods:

- Our Proposal LSTM (3 stacked neurons) + SoftMax Layer
 - Dim. Hidden vector 64 (Thau Dataset) and 512 (Réunion Island)
- Random Forest (400 trees)
- SVM (RBF Complexity = 100 and Sigma = 0.01)

Use Deep Model (LSTM) as feature extractor:

- RF(LSTM)
- SVM(LSTM)

Evaluation:

- 5 Fold Cross Validation (Training/Test)
- Different evaluation measures:
 - Accuracy
 - F-Measure (F-Measure x Class)
 - Карра

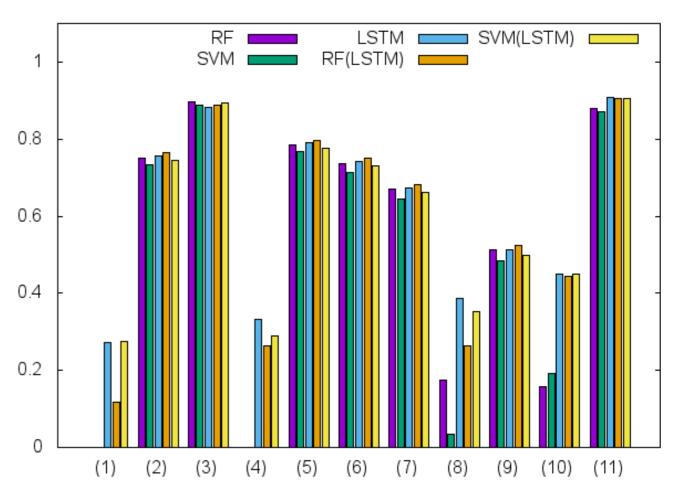
Results on Thau Dataset

Method	Accuracy	F-Measure	Kappa
RF	$74.28\% \pm 0.75\%$	$71.67\% \pm 0.74\%$	0.68 ± 0
SVM	$72.43\% \pm 0.74\%$	$69.83\% \pm 0.63\%$	0.65 ± 0
LSTM	$75.18\% \pm 0.61\%$	74.57 % ± 0.59%	0.69 ± 0
RF(LSTM)	75.80 % ± 0.36%	$74.24\% \pm 0.40\%$	0.70 ± 0
SVM(LSTM)	$74.10\% \pm 0.40\%$	$73.72\% \pm 0.42\%$	0.68 ± 0
TABLE III			

5-FOLD CROSS VALIDATION ON THE *THAU* DATASET

ID	Land Cover Class	N. of Objects
(1)	Tree crops	600
(2)	Forests and woods	2 4 4 5
(3)	Water	556
(4)	Summer crops	81
(5)	Winter crops	677
(6)	Grasslands	3 882
(7)	Sclerophyll vegetation	2 4 5 7
(8)	Truck farming	227
(9)	Bare soils	299
(10)	Salt marshes	236
(11)	Vineyards	3735

Per Class F-Measure



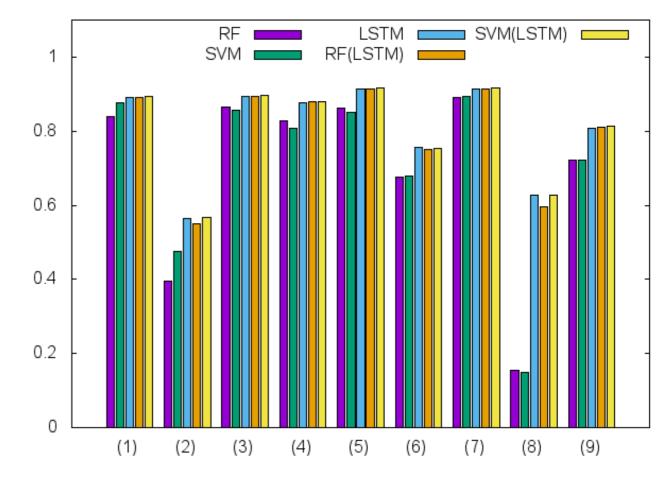
Results on Réunion Dataset

Method	Accuracy	F-Measure	Kappa
RF	$81.19\% \pm 0.72\%$	$79.40\% \pm 0.75$	0.77 ± 0
SVM	$81.59\% \pm 0.47\%$	$80.01\% \pm 0.43\%$	0.77 ± 0
LSTM	$86.23\% \pm 0.62\%$	$86.11\% \pm 0.58\%$	0.83 ± 0
RF(LSTM)	$86.15\% \pm 0.50\%$	$85.97\% \pm 0.48\%$	0.83 ± 0
SVM(LSTM)	86.41 % ± 0.60%	86.23 % ± 0.56%	0.83 ± 0
TABLE IV			

5-FOLD CROSS VALIDATION ON THE REUNION ISLAND DATASET

Per Class F-Measure

ID	Land Cover Class	N. of Pixels
(1)	Urban areas	10 000
(2)	Other built-up surfaces	1 500
(3)	Forests	10 000
(4)	Sparse Vegetation	5 095
(5)	Rocks and bare soil	3 7 2 9
(6)	Grassland	1 744
(7)	Sugarcane crops	2 832
(8)	Other crops	1 500
(9)	Water	1 500



Discussion and Preliminary Findings

- LSTM-based classification model **outperforms** SVM and RF in the case studies
- The use of a model that **explicitly consider temporal behaviour** seems important for SITS data classification
- The major gain is supplied w.r.t. lower represented (and highly mixed) classes
- Features extracted by LSTM seem beneficial for Standard Classifier, RF(LSTM) (resp. SVM(LSTM)) outperforms their counterpart trained on original data
- The two case studies underline that these techniques can be applied to SITS data considering both **pixel-based** and **object-based representation**

Technical and Implementation details on Experiments

- The Deep RNNs classifier are implemented in **KERAS**
- We employ **Theano** as Backend
- Experiments are performed on Server with Intel(R) Xeon(R) CPU E5-2667 v4@3.20Ghz with 256Gb of RAM and GPU TITAN X Pascal 2

Bigger Dataset:

- 37900 pixels with 23 * 10 dimensions
- For each fold (5-Folds CV), we took (on average) **204 minutes** to learn a model
- We train the model for 200 epochs with batch size equals to 20

Smaller Dataset:

- 15196 objects with 3 * 10 dimensions
- For each foot (5-Folds CV), we took (on average) 6 minutes to learn a model
- We train the model for 200 epochs with batch size equals to 20

For all the models we have used the **RMSprop** optimisation procedure (variant of SGD)

Conclusion & On-going Works

Considerations:

- The RNNs approaches are still under exploited in the Remote Sensing Field, really few works exist as of now (Bitemporal Change Detection [Lyu16], Hyperspectral Classification [Mou17]).
- **RS data is different** w.r.t. standard Computer Vision data (RGB images) on which DL methods were developed:
 - Multi-band informations
 - Different Resolutions, Different Sensors
 - SITS Data
- New Applications and New Trends require adapted DL techniques/architectures (i.e. LSTM literature mainly comes from NLP domain)

[Lyu16] Haobo Lyu, Hui Lu, Lichao Mou:

Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sensing 8(6): 506 (2016)

[Mou17] L. Mou, P. Ghamisi, X. X. Zhu, "Deep Recurrent Neural Networks for Hyperspectral Image Classification", IEEE Transactions on Geoscience and Remote Sensing X(99): 1 - 17 (2017)

On-going Works

On-going works:

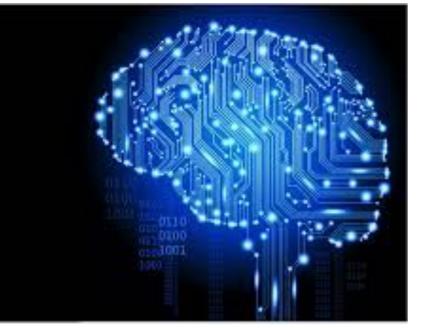
- Considering RNNs to work on Radar Time Series (Sentinel 1):
 - We apply LSTM and GRU in order to produce winter vegetation quality cover [Minh17].
 - Results have shown that LSTM/GRU seems work better than RF and SVM.
 - Use LSTM/GRU features still improve quality of the standard classifier.
- On-going internship on (high resolution S2) SITS and VHSR (Very High Spatial Resolution - Pleiades/SPOT6-7) fusion for Land Cover mapping. Idea coupling RNN and CNNs to leverage both temporal and spatial info.
- Considering RNNs models (DL architectures) to fusion/combine Optical/Radar Time Series Data.

[Minh17] D. Ho Tong Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F. Osman, P. Maurel:

Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. CoRR abs/1708.03694 (2017)

Thank you for your Attention

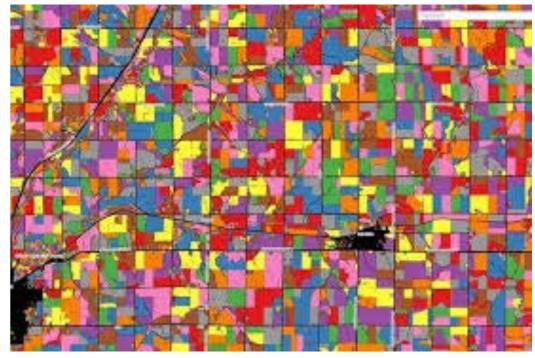
Questions



Emerging Trends in EOD

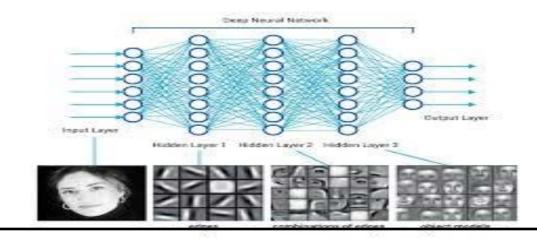
Nowadays, Satellite imagery analytic uses Machine Learning Techniques to:

- Deal with huge amount of data
- Automatically build predictive methods
- Group together similar areas
- Detect Objects of Interest



Recent Trends 'Deep Learning Methods' [LeCun15] :

- Inspired by human brain
- Layers architecture
- Applications in different domains:
 - + Speech Recognition
 - + Image Recognition
 - + Natural Language Processing



Deep Learning Techniques

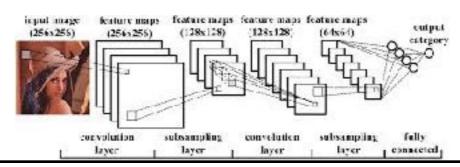
State of the art performances in Image and Signal classification

Different Family of approaches exist (Feed-Forward and Recurrent) [LeCun15]

Convolutional Neural Networks (CNNs) [Zhang16]:

- Convolutional approaches (1-D, 2-D and 3-D)
- Very useful to manage and deal with Spatial Information
- Current best performances in Image Classification

Starting to be known in Remote Sensing



[Zhang16] L. Zhang, L. Zhang and B. Du, "Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art". IEEE Geoscience and Remote Sensing Magazine: 4(2): 22-40 (2016).

[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. "Deep Learning" In Nature 52(8): 436-444 (2015).